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Abstract

In this project, I will start by giving an introduction to Hawkes Processes, including some use

cases. I will then review the state of the art in the mathematics of Hawkes Process. After

developing a good grounding in the theory and practice of this branch of mathematics, I will

investigate the possibility of modelling time series data using Hawkes Processes. In this report,

I will introduce some definitions and formulas for the purpose of the reader’s understanding.

Hawkes Processes are a class of Stochastic Processes that have the interesting property that

they are “self-exciting“, meaning that the intensity of the process increases for some time after a

new arrival. This mimics what we see in the stock market where bursts of buy/sell activity for a

stock increase the probability of more of the same activity in the near future. Hawkes Processes

can be difficult to analyse, but they show some considerable promise as concise models in a

variety of different fields.

Keywords: Hawkes Process, Self-Exciting, Stochastic Processes.
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Chapter 1

Introduction to Hawkes Processes

I will start this project by following a review article Laub et al. (2015) [1] which gave a compre-

hensive review of the current state of Hawkes Processes. I have also reviewed other literature

including Swishchuk (2017) [2], Crowley (2015) [3], Laub (2014) [6], and Rizoiu et al. (2017) [11]

for guidance on how to approach writing about this topic.

I will begin, in Chapter 1, by introducing some basic mathematical concepts that must be

understood to gain a grasp on the Hawkes process. In Chapter 2, I will introduce the theory of

the Hawkes process and its conditional intensity function, as well as its practical applications

from the literature. It is then that I will move onto the excitation function and branching

process in Chapter 3. In Chapter 4, I will derive the log-likelihood function for the Hawkes

process, which is used to estimate the parameters of a Hawkes process realisation. Chapter

5 is where I introduce the method of estimating parameters for a Hawkes process in order to

gain a better insight into this method before I introduce the algorithm that will calculate the

equations needed to complete this task automatically in Chapter 6. In the same chapter, I

simulate a Hawkes process for a chosen set of parameters (and for different n values) and then

estimate said parameters as a practical introduction to these algorithms. This leads me to

investigate how different n values effect the accuracy of the parameter estimates in Chapter 7.

After gaining a better understanding in what to look out for when estimating parameters, I

introduce a new method for predicting the future cascade size of a Hawkes process using these

estimated parameters later in the same chapter. In Chapter 8, I apply everything I’ve learnt

thus far to investigating the applications of Hawkes processes on some of the examples laid out

in Chapter 2 using my algorithms. These applications are to Internet Virality, Crime Data and

Finance. In my Conclusion, I lay out my hopes for the future application of these types of

algorithms and why. I also lay out some possible use cases for these algorithms based on what

I’ve learnt about this process.
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Modelling with Hawkes Processes Hawkes Processes Introduction

1.1 What is a Hawkes Process

First introduced by Alan G. Hawkes in 1971; the Hawkes process has been shown to have wide

applications in fields such as neuroscience, genome analysis, seismology, insurance and finance.

As mentioned, Hawkes processes are a class of stochastic process. These processes are systems

that change in accordance with probabilistic laws. Hawkes processes are a very interesting class

of stochastic process because of their defining characteristic as being self-exciting. This means

that each arrival increases the probability of future arrivals for some period of time after a new

arrival. It models arrivals over time, the future evolution of this self-exciting point process is

influenced by the timing of past events. The Hawkes process depends on its entire past history

and has a long memory. Thus, the process is a non-Markovian extension of the Poisson process.

The Hawkes process is a counting process on a simple point process that has self-exciting prop-

erty, clustering effect and long memory. I will define a counting process and point process,

following the approach taken in Laub et al. (2015) [1], for the reader’s understanding.

1.2 Counting Process and Point Process

Definition: Counting Process

A counting process is a stochastic process N(t), with t > 0, taking positive integer values and

satisfying N(0) = 0. It is almost surely (a.s.) finite, and is a right-continuous step function with

increments of size +1.

A counting process N(t) can be thought of as a cumulative count of the number of arrivals into

a system up to t, the current time. The history of the arrivals up to time t is a filtration, (an

increasing sequence of σ − algebras). This is denoted by FN (t), t > 0.

The counting process is defined by the sequence of random arrival times, denoted (t1, t2, ...), at

which the counting process N(t) has jumped with increment +1. The process defined by these

arrival times is called a point process.

Definition: Point Process

A sequence of random variables (t1, t2, ...), taking values in [0,+∞), is called a point process if

P (0 6 t1 6 t2 6 ...) = 1, and the number of points in a bounded region is a.s. finite.

The terms counting process and point process are often used interchangeably in much of the

literature in this field. It is often left up to the reader to infer which process is being discussed

based on the context. However, I will give a summary of these terms:

• The series of random arrival times T = (t1, t2, t3, t4, ...) as seen on the x − axis below is

2



Hawkes Processes Introduction Modelling with Hawkes Processes

called a point process.

• The graph with increments of +1 corresponding to each new arrival is the counting process

associated with this point process.

Figure 1.1: An example of a counting process N(t) as derived from a point process realisation
(t1, t2, ...). (Diagram created by author, following the style of Fig. 1 of [1].)

3



Chapter 2

The Hawkes Process

2.1 Hawkes Conditional Intensity Function

I will define the conditional intensity function here for the readers understanding. Note, we

will return to this topic in Section 2.3 for a more in-depth look.

Definition: Conditional Intensity Function [6]

Consider a counting process N(t) with associated histories H(t). If a function λ∗(t) exists such

that

λ∗(t) = lim
h↓0

E[N(t+ h)−N(t)|H(t)]

h
(2.1)

which only relies on information of the counting process in the past, then λ∗(t) is called the

conditional intensity function of N(t).

The Hawkes Process is defined by its conditional intensity function,

λ∗(t) = λ+
∑
ti<t

µ(t− ti), (2.2)

where λ is the background intensity, µ is the excitation function, and (t1, t2, t3, ...., tk) denote

the times of past arrivals into the system up to time t.

This is the standard and most intuitive form of the Hawkes conditional intensity function. The

structure of the conditional intensity function λ∗(t) is easy to understand as it has only two main

components. λ is the background intensity, for some λ > 0 and µ is the excitation function, for

some µ : (0,∞)→ [0,∞).

4



The Hawkes Process Modelling with Hawkes Processes

The background intensity, λ, is the constant stable intensity of arrivals on the system. Arrivals

occur according to this intensity at the beginning of the process before any arrivals have occurred,

then the system will see additional intensity brought on by the effect of new arrivals, the specifics

of this additional intensity is determined by the second term.

The second term,
∑

ti<t
µ(t − ti), is the additional influence on the intensity from the sum of

excitations in the past up to time t. The function µ is defined such that the larger (t− ti) is, the

smaller its effect is on λ∗(t). The influence of previous arrivals on the intensity will wear off as

they get older, this distance in time is accounted for in the term (t− ti). As this term grows, its

effect on µ (and in turn, µ’s effect on λ∗(t)) will diminish. The speed with which it diminishes,

as well as the initial impact of a new arrival, will depend on your choice of excitation function.

The configuration of the excitation function (sometimes called the response function) will be

discussed further in Chapter 3.

Note:

One could have a process where λ = 0. So, you would have an initial burst, and then the

background intensity will no longer carry the process forward and bring in new arrivals. In this

process, the conditional intensity function drops to zero and stays there. This type of Hawkes

process could be used to model viral trends, such as popular tweets and viral videos.

We will assume that µ 6= 0 as this would change the conditional intensity function to a homo-

geneous Poisson process.

In summary, we can interpret equation 2.1 as follows: New arrivals occur according to a back-

ground intensity λ, and any new arrival into the system will cause the intensity to increase by

µ(0). This additional intensity will fade away according to the choice of excitation function

µ(t). The fact that an arrival causes the intensity of future arrivals to increase means that this

process is a self-exciting process.

Notice how, in Fig. 2.1, the conditional intensity has dropped back down to the background

intensity λ at the end of the interval between t4 and t5, where there were no new arrivals to

excite the process. Also, the effect of previous arrivals on µ has decreased to zero due to the

significant amount of time that has passed since the previous arrivals. At this point, we could

say that the excitation function µ has no effect on the conditional intensity function. Thus, this

process, at this point, is a Poisson process (defined in Appendix A.1). At this point, the history

of arrivals has no effect on the next arrival.

Keep in mind; it can be difficult to identify how a new arrival came into the system. Be it from

λ, like an arrival in line with a Poisson process, or from the excitation function µ, the effect of

5



Modelling with Hawkes Processes The Hawkes Process

recent previous arrivals. However, in this case, it is fair to say it came from λ.

Figure 2.1: An example of a conditional intensity function λ∗(t) with new arrivals into the
system at times (t1, t2, ...) displaying the self-exciting property. (Diagram created by author,
following the style of Fig. 2 of [1].)

2.2 Deriving Hawkes Conditional Intensity Function

To facilitate the reader’s understanding, I decided to first introduce the conditional intensity

function in the form I will be implementing it, and leave the mathematics leading to its fin-

ished form until now. I hope this decision makes the Hawkes process easier to understand and

gives those who are not interested in the mathematics behind deriving the conditional intensity

function the option to skip the following two sections.

To begin our derivation of the conditional intensity function, we will continue on from our

definition of the counting process and point process in Section 1.2. The conditional intensity

function is related to the conditional arrival distribution. This is the distribution function of

the next arrival time of the point process conditional on the timing of past arrivals. We will

define the conditional c.d.f. and p.d.f. of the next arrival time after our final observed arrival k,

denoted as Tk+1, conditional on the history up until the last arrival at time u, H(u) following [1]

as

F ∗(t|H(u)) =

∫ t

u
P(Tk+1 ∈ [s, s+ ds]|H(u))ds =

∫ t

u
f∗(s|H(u))ds. (2.3)

This is the probability of the k + 1 event happening in an infinitesimal time interval given the

history of arrivals. Then integrating over time gives the cumulative distribution. We find the

6



The Hawkes Process Modelling with Hawkes Processes

joint p.d.f. using the chain rule as,

f(t1, t2, t3, ...., tk) =
k∏
i=1

f∗(ti|H(ti−1)). (2.4)

The quantities F ∗(t) and f∗(t) feed into the formulation of the conditional intensity function

λ∗(t), I will talk more on this below, but first I feel it may be helpful to gain a more intuitive

understanding of these equations and their terms.

The intuitive understanding of equation 2.3 is not obvious at a glance. This equation describes

a situation where we think of ourselves as being at time t, and we have observed arrivals up

to time u (u < t), the time at which arrived our final observation Tk. We want to know the

probability of the Tk+1 event having arrived between times u and t. This probability is found by

taking times s between u and t and asking what is the probability that Tk+1 arrived between s

and s+ ds. This is a very small interval, so we are essentially looking at time s and finding the

probability of the event occurring instantaneously at that time. Then we want the sum of the

probabilities that the next event happened anywhere between u and t. These probabilities are

independent, so this is achieved by taking the integral over u to t. Again, this is all conditional

on the history of arrivals up to time u, H(u). So f∗(s) is defined to be the probability, at time s,

of observing the next event occurring instantaneously. (Note here I omitted the term specifying

that s is conditional on the history, this is done for brevity and will continue in the following

chapters.)

Equation 2.4 describes the probability of seeing a given realisation, i.e., the probability that we

will have seen a given series of events calculated as follows: given the history up until t1, what is

the probability that I observe the next event at time t2. These are observed to be independent,

so each instance is multiplied to find the probability of the series of events, the point process

realisation.

It is the relationship between f∗(t) and F ∗(t) that defines the conditional intensity function,

we can think of this as the expected rate of arrivals conditioned on the history H(u). The

conditional intensity function, if it exists for a given point process, determines the probability

structure of the point process uniquely, as described in Daley and Vere-Jones (2003) [4], and is

defined as

λ∗(t) =
f∗(t)

1− F ∗(t)
. (2.5)

This is the conditional intensity function in terms of f∗(t) and F ∗(t). We can break down this

equation to the form it is usually given in formal definitions following the approach taken in

Rasmussen (2018) [5] to get equation 2.1 above and 2.6 below (same equation given twice for

the reader’s understanding).

7



Modelling with Hawkes Processes The Hawkes Process

2.3 Conditional Intensity Function and the Hawkes Process

I will now show how the conditional intensity function fits into our definition of a Hawkes process.

A reminder of the formal definition of a conditional intensity function is as follows.

Definition: Conditional Intensity Function [6]

Consider a counting process N(t) with associated histories H(t). If a function λ∗(t) exists such

that

λ∗(t) = lim
h↓0

E[N(t+ h)−N(t)|H(t)]

h
(2.6)

which only relies on information of the counting process in the past, then λ∗(t) is called the

conditional intensity function of N(t).

The expected number of events in an interval is proportional to the time interval as the size of

the interval, h, shrinks to zero. This function shows the conditional intensity function as the

instantaneous rate of change with respect to N(t).

Definition: Hawkes Process

Consider a counting process with associated history H(t) that satisfies

P(N(t+ h)−N(t) = m|H(t)) =


λ∗(t)h+ o(h), m = 1

o(h), m > 1

1− λ∗(t)h+ o(h), m = 0

.

Intuitively, this is the probability that the number of arrivals that occur in the interval (t, t+h) is

m, given the history of the counting process up to t. We can see that the probability that m = 1

(one arrival) is given by the conditional intensity function weighted by h plus some error of h.

The probability of the last case (having no arrivals) is given by the complementary probability

of this. The chance of having more than one arrival is given by the error associated with h.

A Note on Non-Linear Hawkes Processes

The above is technically the definition of a linear Hawkes process. I will not touch on the

non-linear case in this paper; I would, however, refer you to Nonlinear Hawkes Processes by

Lingjiong Zhu (2013) [7] for further reading on this. Linear Hawkes processes are much better

studied in the literature compared to the non-linear case. As mentioned by Zhu (2014) in [8];

the literature examines Hawkes processes almost exclusively in the linear case. Another reason

mentioned for the lack of research on the non-linear Hawkes process is because of the lack of

immigration-birth representation and computational tractability. For these reasons, this paper

will focus exclusively on the linear form.

8
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2.4 Applications of Self-Exciting Point Processes

Remembering that the Hawkes process has a long memory, clustering effect, self-exciting prop-

erty and is, in general, non-Markovian, we can think of processes that follow these conditions

for potential applications.

In the example of equity prices, we know the decision whether or not to buy a stock is dependent

on where the stock’s price is now, and its history of price movements. Market makers exhibit

a herding behaviour, where one person makes a trade order to buy a stock, the price moves

up, demand increases, and the process becomes self-fulfilling. In the same way, selling a large

quantity of stock lowers the price of that stock which would lead to other traders (or trader’s

algorithms) to decide to sell before the price drops any lower. I will investigate the application

of the Hawkes process on finance in Section 8.3.

After an earthquake, the resulting seismic disturbance leads to further tremors, called after-

shocks, due to the earth’s crust being disturbed. The distribution of their magnitudes and

arrival times has been proven to be relatively consistent in Reinhart (2018) [9]. Self-exciting

point processes have been used to model this behaviour.

In the same way cases of the flu can quickly spread through a school or office, epidemiologists

have used self-exciting point processes to model epidemic forecasts; unfortunately, the data

are rarely tracked with accurate time and location tags. In a specific example, Meyer et al.

(2012) [10] introduced a self-exciting point process model for a form of meningitis. Their model

accounted for unaffected carriers who could pass the disease on to new people, acting as a

constant background intensity (λ) of new infections. They also modelled infections passed from

an affected carrier to new victims. This case would be more contagious, acting as our excitation

function (µ) in the model.

Similar to the virality of a disease, the virality of trends can be modelled in the same way.

Twitter is a great example of this virality, when you see a tweet, you have the option to retweet

it, i.e., to share it with your followers. Then, each of your followers will have the same option

to retweet. If the tweet in question is particularly captivating, this could lead to a retweet

cascade that bears all the same characteristics as a Hawkes process. Rizoiu et al. [11] modelled

information diffusion through retweet cascades using a Hawkes process. I investigate this very

idea in Section 8.1.

It is observed that crime data often exhibit clustering effects. A fight between rival gangs could

cause more criminal retaliations. Burglars often return to burgle in areas where they have made

successful burglary attempts before. In [12], Mohler et al. used self-exciting point process models

from seismology studies and applied them to data from the Los Angeles Police Department to

9



Modelling with Hawkes Processes The Hawkes Process

illustrate the implementation of these models in the context of urban crime. This is the concept

of my investigation in Section 8.2.

In [13], Reynaud-Bouret and Schbath used a Hawkes process to provide a new method to detect

either avoided or favoured distances between genomic events along sequences of DNA. This was

done by treating the DNA sequence as an integer number line and noticing instances along this

discrete sequence.

In an alternative general example, consider the case where a driver gets a speeding ticket. In this

case, the arrival of a speeding ticket for an individual driver could come at random intervals, but

the driver would be much less likely to break the speed limit for some time interval after receiving

a speeding ticket. This heightened caution and awareness of speed, reducing the probability of

a new arrival (for some period of time), leads this process to be self -regulating, as opposed

to self-exciting. This causes the overall intensity to drop and would slowly rise back up to the

background intensity leading to arrivals appearing temporally regular. Given the area of study

and the greater area of application, this paper will focus on self-exciting processes. The decay,

rise and return to background intensity is all dependent on your choice of excitation function

and your choice of parameters within it. The choice of parameters will be discussed in Chapter

4, while the specific type of excitation function will be discussed in the next chapter.

10



Chapter 3

The Mechanics of Hawkes Processes

What happens to the intensity when a new arrival occurs and how the intensity changes after

which is governed by the excitation function. In the cases we will study (self-exciting processes)

the intensity will rise immediately following an arrival and decay back to the background inten-

sity. The initial rise and the speed of decay will depend on your choice of excitation function; it

is these choices that we will discuss in the following section.

3.1 Specifying the Excitation Function

A reminder of the structure of the conditional intensity function λ∗(t) given in Section 1.2 may

be helpful here:

λ∗(t) = λ+

∫ t

0
µ(t− u)dN(u), (3.1)

which becomes

λ∗(t) = λ+
∑
ti<t

µ(t− ti), (3.2)

where ti represents the arrival times up to time t. The excitation function µ can take on multiple

forms to manage the change of intensity over time following new arrivals. The forms that µ can

take on are often called kernels.

A common choice for excitation function is one of exponential decay, as the name suggests, the

intensity will decay exponentially following the initial increase after an arrival. An example of

what this type of conditional intensity function would look like is given in Fig. 2.1. In this case

µ(t) = αe−βt, where your choice of α, β > 0 will discussed in Chapter 4. In the conditional

11
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intensity function, this becomes

λ∗(t) = λ+

∫ t

−∞
αe−β(t−s)dN(s) = λ+

∑
ti<t

αe−β(t−ti). (3.3)

As the term (t − ti) = 0 at the time of the new arrival, the term e−β(t−ti) = 1, this means

that each arrival into the system instantaneously increases the intensity by α, after which the

intensity decays exponentially at a rate of β. The choice of this excitation function is often

referred to as the Hawkes process with exponentially decaying intensity, and is probably the

most common choice.

Another common choice is a power-law function, this gives us

λ∗(t) = λ+

∫ t

−∞

k

(c+ (t− s))p
dN(s) = λ+

∑
ti<t

k

(c+ (t− ti))p
. (3.4)

This will usually decay less rapidly than the exponential kernel. This requires specification of

three parameters which are positive scalars k, c, and p.

These are the two most commonly used excitation functions. For an introduction on some other

choices of kernel, I would recommend Lima and Choi [14], or Liniger [15].

3.2 The Branching Process

We can understand the stability of a Hawkes process more easily if we view it as a branching

process. The branching process is a stochastic process where particles arrive into a system,

and each particle lives for a certain amount of time, and then creates children. The number

of children had comes from the distribution that defines the branching process. In a standard

branching process, we start with a single particle, and each event thereafter is a descendant

particle of that first particle. The problem here is that it starts with one particle and does not

allow new particles that are not descendants of the first to randomly arrive into the system.

So here we consider an immigration-birth representation where we can have particles enter the

system by immigration (like a random arrival in line with a homogeneous Poisson process) or

by birth (this would act like a response by the excitation function). Now we can return to our

question on the stability of this process. We want to know if this process will grow or decay over

time, this question is answered by the branching ratio; this is the average number of children per

particle. It is easy to understand in a real-world context that if the average number of children

per person is less than 1, the population would decay over time, and if the average is greater

than 1, the population would grow over time.

12
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We can gain an understanding of the stability of a particular branching process by investigating

the branching ratio. This is calculated from the excitation function µ. We understand that here

µ(s)ds is the probability that a child particle will be born at a time s after its parent’s birth.

Then the expected total number of children born from a single particle is∫ ∞
0

µ(s)ds, (3.5)

taken for the exponential kernel is ∫ ∞
0

αe−βsds, (3.6)

this becomes
α

β
. (3.7)

Now we can consider the stability of the branching process in terms of α and β as

α

β


< 1 Subcritical,

= 1 Critical,

> 1 Supercritical.

Figure 3.1: Hawkes process represented as an immigration-birth representation branching tree.
Squares indicate arrivals by immigration, and circles indicate children/descendants of previous
generations, the crosses at the bottom denote the resulting point process. (Diagram created by
author, following the style of Fig. 4 of [1].)

In Chapter 4, we will find estimates for α and β. We can then use these measurements for

stability to gain insights into the process we are working with. For example, we would expect

the branching ratio α/β to be < 1 if the process is not exponentially exploding.
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Chapter 4

The Mathematics of Parameter

Estimation

In this chapter, I will discuss the problem of generating estimates for the parameters of the

conditional intensity function. Given a data set that we assume could be modelled by a Hawkes

process with a particular excitation function, we want to generate parameter estimates for λ, α

and β. We will call these θ̂ = (λ̂, α̂, β̂), of course, the “hat“ symbol here denotes an estimate.

This will be estimated over some finite set of arrival times t = (t1, t2, t3, ...., tk).

4.1 Introduction to the Likelihood Function

As mentioned, an important part of building a Hawkes process model is fitting parameters to the

conditional intensity function. The method we consider is by maximum likelihood estimation.

This begins by deriving the likelihood function. Through an optimisation procedure, we can

find the optimum parameters for the conditional intensity function by maximising the likelihood

function, or equivalently, minimising the negative log-likelihood function. This is all with the

aim of maximising the likelihood of seeing the given data given the estimated parameters. Hence

the name maximum likelihood estimation.

4.2 Deriving the Likelihood Function

In this section, I will follow the approaches taken in [1] and [3] to derive the likelihood function.

To avoid redundancy, I will omit the arguments θ̂ and t. This will give the following abbreviated

functions: L = L(θ̂; t), l = l(θ̂; t), λ∗(t) = λ∗(t; t, θ̂) and Λ(t) = Λ(t; t, θ̂).

Let N(t) be a point process on the interval [0, T ] for T < ∞ and let (t1, t2, t3, ...., tk) denote a
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set of event times associated with N(t) during the period.

Using what I’ve learned from Statistical Inference, I know that the likelihood, L, of the function

f(t) is given by

L = f(t1, t2, t3, ...., tk) =

k∏
i=1

f∗(ti). (4.1)

Therefore, I want to isolate f∗(t) and take it from there, so I will write this function in terms of

the conditional intensity function like in Section 2.2. In equation 2.3 in Section 2.2 I’ve shown

how f∗(t) = d
dtF

∗(t), using this we now get

λ∗(t) =
f∗(t)

1− F ∗(t)
= − d

dt
log
(

1− F ∗(t)
)
, (4.2)

this is because

− d

dt
log
(

1−F ∗(t)
)

= − 1

1− F ∗(t)

(
d

dt
(1−F ∗(t))

)
= − 1

1− F ∗(t)

(
− d

dt
F ∗(t)

)
=

1

1− F ∗(t)
f∗(t).

(4.3)

I will denote the last known event time before t as tk, then integrating both sides over (tk, t) we

get∫ t

tk

λ∗(u)du =

∫ t

tk

− d

dt
log
(

1−F ∗(t)
)

= − log
(

1−F ∗(t)
)∣∣∣t
tk

= log
(

1−F ∗(t)
)
−log

(
1−F ∗(tk)

)
.

(4.4)

Here, F ∗(tk) = 0, as Tk+1 > tk. This is because multiple arrivals cannot occur at the same time

in a simple point process given H(u) includes the event at tk. Therefore,∫ t

tk

λ∗(u)du = − log
(

1− F ∗(t)
)
. (4.5)

Taking the exponential of both sides, we can isolate F ∗(t) like such

F ∗(t) = 1− exp

(
−
∫ t

tk

λ∗(u)du

)
, (4.6)

and differentiating both sides to find f∗(t) in the fashion above (remembering that f∗(t) =
d
dtF

∗(t)) we find
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d

dt
F ∗(t) =

d

dt

(
1− exp

(
−
∫ t

tk

λ∗(u)du
))

=⇒ f∗(t) = 0− d

dt
exp

(
−
∫ t

tk

λ∗(u)du
)

=⇒ f∗(t) = −
(

(− λ∗(t)) exp
(
−
∫ t

tk

λ∗(u)du
)

=⇒ f∗(t) = λ∗(t) exp
(
−
∫ t

tk

λ∗(u)du
)
. (4.7)

Now that we have isolated f∗(t), we can apply the likelihood, L, to the function in the way

described in equation 4.1 as follows

L =
k∏
i=1

f∗(ti)

=

k∏
i=1

λ∗(ti) exp

(
−
∫ ti

ti−1

λ∗(u)du

)
= λ∗(t1) exp

(
−
∫ t1

t0

λ∗(u)du

)
∗ λ∗(t2) exp

(
−
∫ t2

t1

λ∗(u)du

)
∗ .....

=

[ k∏
i=1

λ∗(ti)

]
exp

(
−
∫ t1

t0

λ∗(u)du−
∫ t2

t1

λ∗(u)du−
∫ t3

t2

λ∗(u)du......

)
. (4.8)

Notice that the integral limits are a telescoping series starting from t0 and ending at tk such

that the limits of the integral can now be taken as from 0 to tk

L =

[ k∏
i=1

λ∗(ti)

]
exp

(
−
∫ tk

0
λ∗(u)du

)
. (4.9)

Finally, we will consider the case where the process is observed over some time period [0, T ] ⊃
[0, tk]. This means that the likelihood includes the possibility of observing no arrivals in the

time period (tk, T ], where we then have

L =

[ k∏
i=1

f∗(ti)

](
1− F ∗(T )

)
. (4.10)

As F ∗(T ) is the probability an event happened by time t, (1 − F ∗(T )) is the probability that

no event happened by this time. Therefore equation 4.10 is this probability multiplied by the

likelihood
∏k
i=1 f

∗(ti).
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Here I can use the equivalence established in equation 4.6 to get

1− F ∗(T ) = exp

(
−
∫ T

tk

λ∗(u)du

)
, (4.11)

and as we’ve seen in equations 4.8 and 4.9

k∏
i=1

f∗(ti) =
[ k∏
i=1

λ∗(ti)
]

exp
(
−
∫ tk

0
λ∗(u)du

)
, (4.12)

therefore,

L =

[ k∏
i=1

f∗(ti)

](
1− F ∗(T )

)
=

[[ k∏
i=1

λ∗(ti)
]

exp
(
−
∫ tk

0
λ∗(u)du

)](
exp

(
−
∫ T

tk

λ∗(u)du
))

=

[ k∏
i=1

λ∗(ti)

]
exp

(
−
[ ∫ tk

0
λ∗(u)du+

∫ T

tk

λ∗(u)du

])
=

[ k∏
i=1

λ∗(ti)

]
exp

(
−
[ ∫ T

0
λ∗(u)du

])
. (4.13)

As a result, we can see that equation 4.10 is equivalent to

L =

[ k∏
i=1

λ∗(ti)

]
exp

(
−
∫ T

0
λ∗(u)du

)
. (4.14)

Thus, we’ve accounted for the likelihood including the possibility of observing no arrivals in the

time period (tk, T ]. This extends the likelihood function derived in equation 4.9.
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4.3 Log-Likelihood for Exponential Decay

Again, using what I’ve learned from Statistical Inference, I know that the log-likelihood, l, of

the function f(t) is given by

l = log

( k∏
i=1

f∗(ti)

)
=

k∑
i=1

log
(
f∗(ti)

)
. (4.15)

Using what we know here, we can take the likelihood function from equation 4.9 and derive the

log-likelihood function for the interval [0, tk] as follows

l = log

([ k∏
i=1

λ∗(ti)

]
exp

(
−
∫ tk

0
λ∗(u)du

))
, (4.16)

which becomes

l =

k∑
i=1

log (λ∗(ti))−
∫ tk

0
λ∗(u)du =

k∑
i=1

log (λ∗(ti))− Λ(tk). (4.17)

The last term, Λ, is defined to be the compensator and will be discussed further in my final

report. Note that the compensator, being the integral over [0, tk], can be separated into the

segments [0, t1], (t1, t2], (t2, t3], ....., (tk, tk+1], and therefore

Λ(tk) =

∫ tk

0
λ∗(u)du =

∫ t1

0
λ∗(u)du+

k−1∑
i=1

∫ ti+1

ti

λ∗(u)du. (4.18)

We will now consider the case where λ∗(u) decays exponentially, and I will simplify the above.

I will sub in the standard form of the conditional intensity function with exponential kernel in

place of λ∗(u). Note in the below that the excitation function does not apply where we have no

arrivals in the integral range from 0 to t1. Then working through the integrals and rearranging

we get

Λ(tk) =

∫ t1

0
λdu+

k−1∑
i=1

∫ ti+1

ti

λ+
∑
tj<u

αe−β(u−tj)du

Λ(tk) = λt1 +

k−1∑
i=1

[
λu
]ti+1

ti
+ α

k−1∑
i=1

∫ ti+1

ti

i∑
j=1

e−β(u−tj)du

Λ(tk) = λt1 +

k−1∑
i=1

[
λti+1 − λti

]
+ α

k−1∑
i=1

∫ ti+1

ti

i∑
j=1

e−β(u−tj)du. (4.19)
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Now we can expand the second term to make explicit its telescoping series nature

Λ(tk) = λt1 +
[
(λt2 − λt1) + (λt3 − λt2) + ...+ (λtk − λtk−1)

]
+ α

k−1∑
i=1

∫ ti+1

ti

i∑
j=1

e−β(u−tj)du

=⇒ Λ(tk) = λt1 +
[
− λt1 + λtk

]
+ α

k−1∑
i=1

∫ ti+1

ti

i∑
j=1

e−β(u−tj)du

=⇒ Λ(tk) = λtk + α
k−1∑
i=1

∫ ti+1

ti

i∑
j=1

e−β(u−tj)du. (4.20)

Rearranging and working through the integral we are left with

Λ(tk) = λtk + α
k−1∑
i=1

i∑
j=1

∫ ti+1

ti

e−β(u−tj)du

=⇒ Λ(tk) = λtk + α
k−1∑
i=1

i∑
j=1

− 1

β

[
e−β(u−tj)

]ti+1

ti

=⇒ Λ(tk) = λtk + α
k−1∑
i=1

i∑
j=1

− 1

β

[
e−β(ti+1−tj) − e−β(ti−tj)

]

=⇒ Λ(tk) = λtk −
α

β

k−1∑
i=1

i∑
j=1

[
e−β(ti+1−tj) − e−β(ti−tj)

]
. (4.21)

If we swap the order of the summations we can keep j fixed and vary i to k − 1 and factor out

the e−β(−tj) terms. This way, it is much clearer to see the inner sum telescope. We can then

pass the term in the square brackets through the summation which will allow us to cancel some

terms

Λ(tk) = λtk −
α

β

k−1∑
i=1

[
e−β(tk−ti) − e−β(ti−ti)

]

= λtk −
α

β

k−1∑
i=1

[
e−β(tk−ti) − 1

]
. (4.22)

Finally, the final summand is often extended to k, this step is redundant as it means adding 0

to the final result, but I will include this out of tradition and mathematical aesthetics

Λ(tk) = λtk −
α

β

k∑
i=1

[
e−β(tk−ti) − 1

]
. (4.23)

This is now our final expression for Λ(tk). Now we can take this, along with the standard form
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of Hawkes process with exponential decay,

λ∗ = λ+ α
∑
ti<t

e−β(t−ti), (4.24)

and substitute these into equation 4.17 to give us the log-likelihood function for a Hawkes process

with exponential decay

l =
k∑
i=1

log

[
λ+ α

i−1∑
j=1

e−β(ti−tj)
]
− λtk +

α

β

k∑
i=1

[
e−β(tk−ti) − 1

]
. (4.25)

Computing a summation within a summation will lead to O(k2) complexity, this is computation-

ally infeasible if k is sufficiently large, which may limit the number of events one can compute

with. However, we can take the inner summation separately, which allows l to be computed

with O(k) complexity. For i ∈ {2, ...., k}, let A(i) =
∑i−1

j=1 e
−β(ti−1−tj), so that

A(i) = e−βti+βti−1

i−1∑
j=1

e−βti−1+βtj = e−β(ti−ti−1)
(

1+
i−2∑
j=1

e−β(ti−1−tj)
)

= e−β(ti−ti−1)(1+A(i−1)).

(4.26)

Along with the base case of A(1) = 0, l can be written as

l =
k∑
i=1

log

[
λ+ αA(i)

]
− λtk +

α

β

k∑
i=1

[
e−β(tk−ti) − 1

]
. (4.27)

Using equations 4.26 and 4.27, we can compute estimations for the parameters λ, α and β in the

fashion described in Section 4.1. Again, this is done by minimising the negative log-likelihood

function, which is equivalent to maximising the likelihood function.
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Chapter 5

An Introduction to Parameter

Estimation in R

In this chapter, I will be using equations 4.26 and 4.27 to gain an intuitive understanding of

the specifics of parameter estimation by varying elements of the data and procedure used on a

small scale. I began by configuring the log-likelihood along with the function A(i) by hand for

a small number of events.

5.1 Calculating Log-Likelihood Equations

The artificial data I will use consists of the following arrival times: t = {1, 2, 4, 5, 7, 10, 11}.

With event k = 1, the base case, A(1) = 0, this results in

l = log(λ)− λ.

k = 2

l = log (λ) + log (λ+ αe−β)− 2λ+
α

β
[e−β − 1].

The subsequent log-likelihoods calculated are included as an appendix in Section A.2.

5.2 Applying Log-Likelihood Equations in R

In order to have R calculate the parameter estimates, I first gave the programme the vector of

data, my arrival times. Then I built a function environment to hold my log-likelihood function.
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The arguments in this function environment are made up of two things; the parameters of the

log-likelihood function (α, β, λ), and the data to be inspected (my vector of arrival times). The

function would then return the negative of the log-likelihood function. This is the function I

am tasked with minimising. To do this, I use the R function Non-Linear Minimisation (nlm);

this function takes my log-likelihood function along with the arrival data and an initial guess

for each of the three parameters. R will then search in 3-dimensional space for improvements

to these parameters similar to how the Newton–Raphson method works. Improvements to the

parameters result in a further minimisation in the negative log-likelihood function. The code

has been configured such that the nlm function will then display the value of the negative log-

likelihood function and the final estimates for the three parameters. This process is repeated for

each of my data sets as the number of arrivals will result in a different log-likelihood function.

For my first case where I have k = 1, R calculated a minimum value of 1 for the function and

an optimal value of 9.9× 10−1 for λ. α and β were not included in the resulting log-likelihood

function, and so, their initial guesses did not change, their omission makes sense as these two

terms are in the excitation function which only comes into play after the first arrival, and in

this case, we had no further arrivals.

In the k = 2 case, R calculated a minimum value of 2 with the following estimates 2.7 × 10−4,

1.2× 103, and 1.0 for α, β, and λ respectively.

With k = 3, R finds a minimum value of 3.9, with estimates α̂ = 7.4× 10−4, β̂ = 4.1× 103, λ̂ =

7.5× 10−1.

The k = 4 case results in a minimum of 4, with estimates α̂ = 7.0 × 10−4, β̂ = 7.3 × 103, λ̂ =

1.0.

The k = 5 case results in a minimum of 6.7, with estimates α̂ = 1.0× 10−4, β̂ = 3.6× 104, λ̂ =

7.1× 10−1.

The k = 6 case results in a minimum of 9.1, with estimates α̂ = 4.9× 10−4, β̂ = 9.7× 103, λ̂ =

6.0× 10−1.

The k = 7 case results in a minimum of 10.2, with estimates α̂ = 5.2× 10−4, β̂ = 8.5× 103, λ̂ =

6.4× 10−1.

To explore how the three parameters vary under different data, I took the k = 5 case and

constructed data with a small inter-event time t = {1, 2, 3, 4, 5}. This yielded a minimum of 5

with estimates α̂ = 3.0 × 10−4, β̂ = 5.7 × 103, λ̂ = 1.0. Then, in the same way, I constructed

data with a much larger inter-event time t = {5, 10, 15, 20, 25}. This yielded a minimum of 13.0

with estimates α̂ = 3.0×10−5, β̂ = 1.9×105, λ̂ = 2.0×10−1. As you can see, the value for α has
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reduced by a factor of 10 as a result of this change. This is understandable as α is thought of as

the parameter setting the strength of the interactions. β also changed significantly between the

two tests, β is thought of as the parameter that controls the relaxation of the intensity as time

passes after an arrival. The larger number for β in the second test indicates that this model

predicts that the intensity drops off much faster when the inter-event times are much larger.

We see a similar change with λ, as the model sees that it takes much longer for a new arrival to

enter the system.

5.3 Discussion

As the nlm method is very similar to the Newton–Raphson root-finding algorithm, changes to

the initial guesses can lead to very different final results. I found this to be especially true

in the cases I coded above, I suspect this is because the data I used is very small and may

result in many local minima where the nlm algorithm would settle. If the data were bigger,

these inconsistencies could be smoothed out, and the algorithm could more easily find a global

minimum.

Another item to keep in mind when applying this process to real-world data is the constraint

that arrivals cannot occur at the same time. If your data includes multiple arrivals in the same

time interval, you may think it would be appropriate to split these arrivals evenly between this

interval (for example if five arrivals occur in a one-second interval, to separate these arrivals

by 0.2 seconds each). However, this method may result in the optimisation function noticing a

pattern of arrivals after 0.2 seconds intervals, and thus, the parameters would reflect that, and

try to replicate this.

Another point I am aware of is that the data sets of arrival times I have worked with are very

artificial. An ideal test at this point would be to simulate a Hawkes process, which would return

a vector of arrival times. I could then use these arrival times to estimate values for α, β and λ

in a similar way to how I’ve done this before. The test would be to examine if the parameter

estimation procedure could estimate the true parameter values accurately; I will approach this

very task in Section 6.2 and Section 6.3 in the next chapter. However, the problems I’ve had with

this method is that the vector of arrival times is given in continuous time, and would require

much more work to compute the log-likelihood and A(i) functions. More importantly, given

such a small number of arrival times, the accuracy of these estimates would be very unstable.

It is clear that if I am to explore parameter estimation further, I will need a way of computing

equations 4.26 and 4.27 in R for a given data set, as opposed to working this out by hand. I

will introduce a method for completing this task in the next chapter.
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Chapter 6

Simulation and Estimation

In the previous chapters, I have tackled Hawkes processes (which I will sometimes call HPs,

or a HP) from a theoretical basis. Now that we have an intuitive understanding of Hawkes

processes and a grounding in the mathematical concepts that underpin this process, we can

apply this learning to real-world data. As mentioned, to do this, I will be using functions in

R to calculate equations 4.26 and 4.27. A great resource for this has been “MLE of Hawkes’

Self-Exciting Point Process“ by Radha Krishna [17]. This paper gives a short introduction to

Hawkes processes and includes R functions for use in simulating and estimating Hawkes process

realisations. This code performs parameter estimation in a similar way to what I have done in

Chapter 5; however, most importantly, this code automates the calculation of equations 4.26

and 4.27. Using this code, I can apply the nlm function directly to the log-likelihood function

laid out in this code to calculate parameter estimates without having to calculate the terms of

the log-likelihood function individually.

6.1 How This Code Works

The log-likelihood function from this paper can be understood from looking at equation 4.27. I

have included a screenshot of the function below where we can see that it starts by setting out the

parameters αi, βi and λi. The function then calculates the terms of the log-likelihood function

separately as three terms, as explained in Fig. 6.2. This function, of course, also calculates A(i)

from equation 4.26 and then includes it in “term 3“. The function then returns the negative

of the three calculated terms to make up the negative log-likelihood function which I can then

apply the nlm function to in order to find the optimal parameter estimates.
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Figure 6.1: R Code taken from [17] used to calculate equations 4.26 and 4.27.

Figure 6.2: Figure showing how the code in Fig. 6.1 calculates equation 4.27.

Krishna [17] also included a very useful function that can be used to simulate a Hawkes process

realisation for a given set of α, β, λ parameters and the desired number of arrivals n. This

function will generate a vector of arrival times in line with a Hawkes process with exponential

kernel subject to certain checks to ensure the process doesn’t explode. This is done by ensuring

the difference in time between the theoretical previous arrival and the theoretical next arrival is

greater than e−6. The function will then add the value in between these two theoretical arrivals

as the next arrival and add that to the vector of arrival times, and repeat this process until the

number of arrivals calculated is equal to the desired number of arrivals n specified when calling

the function. The random component in this process comes from the random uniform number

called to be used in the calculation of the next arrival time. This random component can be set

such that the results can be reproduced by adding the set.seed function, which I have removed

in favour of a different approach which I will discuss in Section 8.1.1.

25



Modelling with Hawkes Processes Simulation and Estimation

Figure 6.3: R Code taken from [17] used to create a Hawkes process simulation.
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6.2 Simulation (n = 500)

To introduce these methods, I will start by simulating a Hawkes process with 500 arrivals using

some reasonable parameters of α = 4, β = 5 and λ = 0.5. Plotting these arrivals gives the left

graph in Fig. 6.4 below.

I can then test how well the parameter estimation process works by applying the nlm function to

the log-likelihood function with this vector of arrival times to estimate the known true parameters

of this Hawkes process realisation. Doing this has given me estimates of α̂ = 4.07, β̂ = 5.51,

λ̂ = 0.57. These estimates are very close to the actual values of the Hawkes process.

I then decided to resimulate a Hawkes process of 500 arrivals using the estimated parameters

as my α, β, λ parameters. If I then plot this resimulation on the same graph as the original

simulation, I get the right graph in Fig. 6.4 below.

Figure 6.4: Left: HP simulation (n = 500). Right: Resimulated HP with original simulation.

We can see that the simulations follow a similar path and the overall realisations of both Hawkes

processes don’t differ by a large amount at any time point, in fact, they cross paths a number

of times.

Using the A(i) term in the simulation function, I can plot the intensity of this process over time.

If I plot this on top of the original simulation, we can see that spikes in the intensity correspond

with rapid increases in the counting process as we would expect from the explanation given in

Section 2.1. It is also clear that the intensity drops back down (even as low as the background

intensity λ) at times when there are much fewer arrivals in the process.
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Figure 6.5: Hawkes Process Simulation with Intensity (n=500).

6.3 Simulation (n = 1000)

In order to investigate how this process can change, I performed the same process again, this

time with n = 1000 arrivals and parameter values of α = 3, β = 4 and λ = 1. Plotting this

realisation gave the left graph in Fig. 6.6 below.

In the same way as before, I estimated the parameters of this process and the parameter estimates

were α̂ = 2.85, β̂ = 3.98, λ̂ = 0.99. These estimates are much closer to the true values than they

were in the n = 500 case. Again, I resimulated a Hawkes process using the parameter estimates,

plotting this resimulation on the same graph as the original gives the right graph in Fig. 6.6

below.

Figure 6.6: Left: HP simulation (n = 1000). Right: Resimulated HP with original simulation.

As you can see, these two simulations follow even closer to one another than in the n = 500

case, and the two processes converge on almost the exact same point. Out of interest, I plotted
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the intensity of the process over the simulation, which yielded this graph.

Figure 6.7: Hawkes Process Simulation with Intensity (n=1000).

You may be wondering if it was the choice of parameters α, β, λ, or the n value that has

resulted in the increased accuracy in this test, however, I have tested this with multiple choices

of parameters and found similar results. I will explore how the choice of n affects the accuracy

of parameter estimates in the next chapter.
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Chapter 7

Accuracy of Estimation and

Predictability of Cascade Size

7.1 Accuracy of Estimation

To investigate how the number of arrivals affects the accuracy of the parameter estimates I

created a function that will simulate a Hawkes process (for a given set of parameters), then

estimate the parameters of this process. The function will then take the absolute value of the

estimate minus the original parameter, then divide this number by the original value for each

parameter α, β, λ. This gives the error in the parameter estimate, the function then adds the

three parameters and divides by three to find the average parameter error. I then put this

function in a for loop allowing me to vary the number of arrivals across 37 n values ranging

from 10 arrivals to 2500 arrivals. I first ran this for parameters α = 2.25, β = 3 and λ = 1. This

gave the following graph.

Figure 7.1: Average Error of Parameter Estimates across n values.
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I then decided I should run this for different parameter values to avoid the bias in accuracy

caused by not varying these values. I ran this for eight different sets of α, β, λ parameters and

plotted them all together:

Figure 7.2: Average Error of Parameter Estimates across n values (varying parameters).

If I then take each vector of error values and find the average error at each n value, I can then

plot the average parameter estimate error across n values, while varying parameters.

Figure 7.3: Left: Average Parameter Estimate Error across n values. Right: Same Data, log
scaled.

From looking at these graphs, I can make some conclusions about how I should approach pa-

rameter estimation as I continue with my research. When the number of arrivals is n = 25,

the average parameter estimate will be wrong by approx. 94.4%. When the number of arrivals

is n = 100, this error drops to approx. 41.1%. When I estimate parameters with n = 500, I

can expect my estimates to be wrong by about 13.9%. But I can achieve an average parameter

estimate error of 7.5% when I work with n = 1000 arrivals, which is much more acceptable.
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Therefore, based on this test, I will conclude that I can make confident statements about my

findings when I work with over 1000 data points.

7.1.1 Accuracy of Estimation (varying parameters)

I then wanted to investigate how the accuracy of estimates could change when I vary my param-

eters α, β, λ by an order of magnitude. I will start with the parameter values used in Fig. 7.1

of α = 2.25, β = 3 and λ = 1. I will vary each parameter down by an order of magnitude indi-

vidually, and then all together. In the below graph, the black line is the left graph in Fig. 7.3,

the blue line is the average parameter estimate error using the above parameter values, but with

α = 0.225 instead of α = 2.25. In a similar way, the red line is using the Fig. 7.3 parameters,

but with β = 0.3. The green line varies λ such that λ = 0.1. And finally, the orange line varies

all of the parameters down by an order of magnitude.

Figure 7.4: Average Error of Parameter Estimates across n values (varying parameters down by
an order of magnitude).

As we can see, varying lambda, the background intensity, gave very similar results to the average

error line, as did the case varying all parameters down by an order of magnitude. However, the

most interesting point to note in this graph is the extremely varied parameter estimate errors

when we vary α and β independently. The interaction between α and β has been shown to be

extremely important in the HP with exponential kernel as we’ve seen in The Branching Process

in Section 3.2.

To see if this variation is due to the interaction between α and β, or just because their respective

interaction with λ, I will vary both α and β down by an order of magnitude together to see how

that affects the estimated parameter error, this is illustrated in the graph below.
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Figure 7.5: Average Error of Parameter Estimates across n values (varying parameters down by
an order of magnitude).

It’s clear that a huge amount of the error at higher n values has been reduced by restricting α

and β to a ratio near 1 (0.225/0.3 = 0.75). This is an interesting point to note; we know that

if the branching ratio is > 1, the process becomes supercritical and is very unstable (Section

3.2). Initially, I had thought that this means that a branching ratio near zero had caused a

different type of instability in the process, resulting in reduced accuracy of parameter estimates,

and therefore, reduced certainty in the resulting conclusions made. This isn’t something that

I’ve seen in the literature around Hawkes processes.

To test this, I then allowed the parameters to vary up by an order of magnitude. This reduced

the size of the error where the branching ratio was near zero (see Fig. 7.6). (Note: I did not

include the case where I vary α up by an order of magnitude as the supercritical nature of this

process was much more extreme than in the previous case of varying the parameters down by an

order of magnitude.) When looking at the red line, varying beta up by an order of magnitude, we

see that the instability in estimates is reduced somewhat. This seems to show that a branching

ratio near zero (2.25/30 = 0.0666̇) is only a problem when α is close to zero too.
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Figure 7.6: Average Error of Parameter Estimates across n values (varying parameters down by
an order of magnitude).

Now that we have a better idea on what to look out for when estimating parameters, we can use

this to predict future cascades by resimulating the process through future events. Alternatively,

we can also use these parameter estimates in a different method to predict future cascades. I

would like to briefly explore this method of predicting future cascade sizes using the parameters

that we can now confidently estimate. I will introduce and explore this method in the next

section.
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7.2 Predictability of Cascade Size

An interesting question to ask is how one could predict the size of the counting process at a

given point in the future. Let’s say we observe a given counting process from a certain point

(call this time τ = 0) up to the most recent arrival (call this time T ). We would call this time

interval the observation window. One could then ask, given the distribution and number of

arrivals seen in the observation window, how many arrivals could we expect to see at a certain

time in the future?

A method that finds a solution to this question is laid out in O’Brien et al. [18], and I will

describe the basic concept behind this method here.

In the observation window [0, T ], we say we’ve observed n arrivals at times {τ0, τ1, τ2, ....., τn−1}.
We will consider how this process evolves up to a certain time in the future, and call this future

time Ω. We will call the time interval (T,Ω] the prediction window. The formula developed to

predict this cascade size is

mI(r) = n+
λ0

1− ξ

[
r +

ξ

β(1− ξ)

(
e−β(1−ξ)r − 1

)]
+

n−1∑
i=1

ξe−βai

1− ξ

[
1− e−β(1−ξ)r

]
. (7.1)

Again, n is the number of observations in the prediction window, λ0 and β are the parameters

estimated, and ξ = α/β, where α will also be an estimated parameter. ai = T − τi for each

arrival time τi in the observation window. r = Ω− T , the length of the prediction window.

In order to calculate the predicted cascade size using this formula, I built a function in R that

will calculate each part of this formula and put it together to find the value for mI(r). This

function is shown below in Fig. 7.7.

It is at this point that I can test the accuracy of this function. In the same way that I’ve done in

Section 6.2, I will simulate a HP realisation with n = 500. I will allow the first 100 elements of

this arrival vector to be the observation window. The 500th element of this vector is the time of

the 500th arrival; I will set this value to be Ω. When I apply these parameters to my predicted

cascade size (PCS) function, it predicts a cascade size of 472.412. I was very impressed with

this result as the function had only 100 data points to work with and still managed to predict

the next 400 data points with great accuracy. A plot of what this prediction looks like is shown

in the left plot in Fig. 7.8.

I then repeated this test for a HP simulation of n = 1000. I set the first 500 arrivals as the

observation window, and predicted the cascade size at the time of the actual 1000th arrival. This
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Figure 7.7: Function built to find the predicted cascade size of a HP.

gave me a PCS of 1013.94 arrivals, which is extremely accurate given the prediction window was

the same length as the observation window. A plot of what this prediction looks like is shown

in the right plot in Fig. 7.8.

Figure 7.8: Left: PCS of an n = 500 HP simulation. Right: PCS of an n = 1000 HP simulation.

To further test the accuracy of this method, I will run a simulation of n = 2000 and predict the

final cascade size using three different observation windows. One observation window will be

[0, 500], another will be [0, 1000], and the final observation window will be [0, 1500].

In the first case, an observation window of [0, 500] (1/4 of the full cascade) yielded a PCS of

2208.175, which is wrong by 10.4%. Observation window [0, 1000] (1/2 of the full cascade) gave

a PCS of 2192.629, this is wrong by 9.6%, this isn’t as much of an improvement over the [0, 500]

case as I was expecting. Finally, an observation window of [0, 1500] (3/4 of the full cascade)

yielded a PCS of 2073.75, which is a sizable improvement over the first two cases, having an

error of only 3.7%. This test, along with other results from this chapter, seems to suggest that
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short prediction windows with large observation windows can yield very accurate results, but the

error in cases with larger prediction windows does not increase linearly. The plots illustrating

these predictions are included below.

(a)
(b)

(c)

Figure 7.9: PCS of an n = 2000 HP simulation with observation windows (a) [0, 500],
(b) [0, 1000] and (c) [0, 1500].

7.2.1 Discussion

One very important point to note with this method of predicting the future of a HP cascade

is that the prediction is linear, so this method doesn’t display the natural clustering of arrivals

present in all HPs. So, in the case of its application to finance, this wouldn’t be the best method

for predicting fluctuations in the market far into the future, however, it could be a very useful

method for short term micro-market movements. I will look into this concept more in Section

8.2.
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Chapter 8

Practical Applications of Hawkes

Processes

8.1 Hawkes Processes Application to Internet Virality

As mentioned in Section 2.4, the virality of trends can follow a self-exciting point process and

bear all the same characteristics as a Hawkes process. One good example of online trends

following this type of process is instances of retweets on twitter.

Figure 8.1: Tweet Announcing the Death of
“Mr. Spock“.

In my interim report, I stated that I would

like to try and replicate the results in Rizoiu

et al. [11] as a proof of concept. In this pa-

per, Rizoiu et al. applied Hawkes processes

to social media data, more specifically, to pre-

dict the popularity of a tweet quoting the New

York Times as measured by retweets. This set

of retweets of an initial tweet is defined as the

retweet cascade. This application will tie together many of the concepts I have discussed, includ-

ing the branching process structure introduced in Section 3.2. This retweet cascade is made up

of only one immigrant event, the original tweet, and all of its offspring, the subsequent retweets.

This offspring is made up of child events coming directly from the original immigrant event, as

in, somebody retweeting the original tweet they saw from following the original author, and also

offspring from subsequent generations where someone may be the recipient of this retweet and

also decide to retweet.
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8.1.1 Replication Procedure

I would like to replicate the results from this paper’s parameter estimation. My method differs

from the method used in this paper, in that, the process was modelled as a marked Hawkes

process. This mark or magnitude is a representation of the user’s influence, as measured in fol-

lowers, the more followers a person has, more people will potentially see their retweet. Therefore,

I don’t expect the parameters I estimate to match the parameters estimated in [11]. However, I

would hope to be able to replicate the process itself. I would hope that using a different method

would add to the robustness of the results obtained.

I started by attempting to replicate the process obtained by counting the first 600 seconds of

retweet instances. Taking each instance of a retweet as an element in the vector of arrival times,

I was able to estimate the parameters for this process as α = 0.03, β = 0.07 and λ = 0.04. These

estimates, of course, differ from the parameters found in [11], being α = 0.0003, β = 1.0156

and λ = 0.04. This result is expected due to the different methods being implemented. I then

turned to replicating the realisation of the process. Using these parameters I’ve estimated, I can

then simulate a HP for the same number of arrivals as the original 600 seconds of retweets, this

number of arrivals being n = 43. I then plotted this realisation on the same graph as the true

realisation here.

Figure 8.2: Replication of Retweets Events (600 seconds).

As we’ve since learnt in Chapter 7, when working with data containing n = 100 arrivals, we can

expect an average error in our estimated parameters of about 41.1%. As we are only working

with 43 arrivals, the simulation using our (probably) poorly estimated parameters is unlikely

the be an accurate replication of the actual retweet cascade.
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As a result, I decided to return to the data source and attempt to replicate the same results,

however, using a larger version of the same data set. I didn’t want to use the full data set, as

this would include a number of retweet instances that have occurred months or even years apart.

The problem with this is that these models don’t account for the fact that, like all things, this

tweet has fallen into the eternal abyss of the internet. Therefore, the sample of data points I’ve

decided to use is the first hour of retweet instances. This data set contains 160 data points, and

when plotted, gives the following graph.

Figure 8.3: Actual Retweets Events (1 hour).

When I attempted to estimate the parameters of this process, I encountered a new problem with

parameter estimation. The vector of arrival times looks like {0, 21, 31, 33, 49, 54, ....., 3480, 3494},
and my model has a hard time dealing with arrival times that are as spread out as these are.

To resolve this issue, I was able to divide this vector of arrival times by an appropriate constant

(in this case, 100), which made it much easier for my algorithm to estimate the parameters

of the process. I then estimated the parameters from my new vector of arrival times. After

resimulating the process using these parameters, I could then multiply these simulated arrival

times by 100 to bring me back to a similar vector of arrival times that I began with. I also

noticed another problem here; when I removed the set.seed(1) function from the simulation

algorithm, thus adding an extra random component into the algorithm, I would often obtain

varying resimulated realisations. This means that each time I ran the resimulation process, I

would be given a slightly different realisation each time. To find a better way of resimulating,

I created a function that takes the parameters α, β, λ and n, then produces ten simulations.

Then it runs each simulated arrivals vector through a for loop which will take each element of

the ten vectors one-by-one and find the average simulation. When this was done, I plotted the

final average simulation on the same plot as the original vector of arrival retweets to obtain the
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graph below.

Figure 8.4: Replication of Retweets Events (1 hour).

As we can see from the graph, this process has been very successful in replicating the actual

retweet cascade.

8.1.2 Discussion

In a similar way to the predicted cascade size method in Section 7.2, finding the average of all

simulations takes a lot of the non-linear nature of the HP out of the final graph. This is because

finding the average of all simulations, each with various clusters of arrivals, can smooth out

the final average simulation. This being such that, the final average simulation has smoothed

out these clusterings to an almost linear realisation. This method tends to give a process that

converges to the same endpoint as the original, as the parameters take the entirety of the original

process into account. This method of finding the average of multiple simulations could be very

useful as it still keeps some of the non-linear nature of the HP, and is very robust in converging

to an accurate terminal point in the process.

Another point to mention is that the arrivals are in seconds, therefore in numerical time format

starting at zero. Our data won’t always be as conveniently formatted. In future chapters, we

will encounter data with much different starting points and increment values; I will explain the

data cleansing procedure required for this in Section 8.2.1.
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8.2 Hawkes Processes Application to Crime Data

As I’ve discussed in Section 2.4, the distribution of crime data can follow a self-exciting point

process and bear all the same characteristics as a Hawkes process. Highly clustered event

sequences in crime data are pervasive in police-reported figures. The reasons for this could come

down to crime-specific patterns of criminal behaviour or due to the fact that an increased sense

of lawlessness in an area can lead to further encouragement of antisocial behaviour. In the case

of burglary, it has been shown that after there has been a burglary at a residence, there is an

increased risk of burglary for both the burgled house and neighbouring houses (Short et al. [19]).

Luckily for my research, there are many well maintained and accurate databases for crime data

that are publicly available. I will be working with crime data from two U.S. cities; Baltimore,

Maryland [20] and Kansas City, Missouri [21].

8.2.1 Baltimore Crime Data

I will start with Baltimore crime data, this data includes all police-reported crimes for the city of

Baltimore for 11 days, from 2020-01-22 06:30:00 UTC to 2020-02-01 23:45:59 UTC, and it is here

that I encountered my first problem with this data. This data is stored in date format in one

column, and the times these crimes were reported are in the next column. Through manipulation

of this data, I was able to format these columns such that Excel could recognise the date and

time parameters. Then multiplying these recognised date cells by 86400 will convert these dates

into Unix T ime format, that being, the number of seconds passed since 01/01/1970.

Now that my time-series data is in a format that my algorithms can work with, there still

remained two more issues, one of which I faced in the previous section. By using this time

format, it means that my algorithm doesn’t recognise that an event has occurred for the first

1579682700 seconds. This large gap would mean that my parameter estimation algorithm is

searching for a λ value low enough to model a process that wouldn’t encounter an arrival for

most of the life of the process, and then see 999 arrivals over the next 950400 seconds (11

days). This simply meant that the parameter estimation algorithm gave seemingly arbitrary

parameters that had no tangible use, and sometimes gave no answer at all. Along with this

problem, this time format also meant that many events were thousands of seconds apart; this

caused a very similar problem for the parameter estimation algorithm. To remedy both of these

issues, I needed to subtract a suitable constant from each arrival time, then divide each arrival

time by another suitable constant. In order to produce usable results, I required a suitable

combination of these two constants that would translate the arrival times into a different series

that could be worked with.

I will first show a plot of the Baltimore crime counting process below.
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Figure 8.5: Baltimore Crime Data.

Then implementing the parameter estimation procedure and resimulating the process from the

beginning, using my multiple simulations method, R outputs a series of arrival times which I

can then manipulate back to the format I started with. I do this by multiplying the simulated

arrival vector by the same constant the actual arrival vector was multiplied by, then also adding

the constant from before. Using the as.POSIXct R function, I can turn this vector of arrival

seconds back into dates and times. When I plot this on the same graph as the original, the

results match almost exactly. This graph is shown in Fig. 8.6.

Figure 8.6: Baltimore Crime Data Resimulation.

For me, the most impressive result from this test is that, despite heavy manipulation of the data,

both prior and post estimation and simulation, there was no loss of accuracy in the results, as

evidenced by the above graph.
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Using this type of method, one can predict the future clusterings of crimes in local areas. I

believe the best use for an algorithm like this could be as a constant process updating on the

fly. If a given cluster starts to emerge, this algorithm could predict, based on the history of

crime data, if a larger cluster will appear in the near future or if we are seeing the end of a small

cluster of crimes. With this type of analysis at hand, police departments could more efficiently

allocate officers to at-risk areas, and reduce the risk of a series of crimes turning into a larger

cluster.

It is this idea that I will now test. I will implement the predicted cascade size method laid out

in Chapter 8 on a smaller subset of the data. I will find a point in the data that resembles the

beginning of a cluster, the entire data set, up to this point, will be the observation window. I

want to see if this method can predict the cascade size at the end of this cluster accurately, such

that this method could be proven useful for police departments. The left graph in Fig. 8.7 below

shows the experiment outline. At the beginning of this cluster, at 18:01 on Friday, there were 220

arrivals. I will predict as far out as 06:00 on Saturday, at this time, the actual number of crimes

was at 280. (Note: this time format is in UTC. Therefore, in local time, the prediction window

is 2 pm to 2 am, which would be a logical time window for the analysis of criminal activity.)

Impressively, the predicted cascade size function estimated that at 06:00 on Saturday (UTC)

there would be 280.0757 arrivals. This estimation is extremely accurate and could prove to be

very useful in its practical application. The realisation of this prediction is shown in Fig. 8.7

below (right graph).

Figure 8.7: Baltimore Crime Data - Prediction Outline and Prediction.

8.2.2 Kansas City Crime Data

I took the same approach when investigating Kansas City crime data. When looking at the

distribution of crimes in this city, it was much more clustered. Because of this, I wanted to see if

my estimation and simulation algorithm could model this distribution accurately. I again used

my multiple simulations algorithm to replicate these results. The crime data is plotted below,

along with the replication realisation.
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Figure 8.8: Kansas City Crime Data and Replication.

I will again implement the predicted cascade size method laid out in Section 7.2 on this data.

Again, I identify a point in the data that resembles the beginning of a cluster, the entire data

set, up to this point, will be the observation window. I then predict the cascade size at the end

of this cluster. I have chosen the point at which the 450th arrival occurred as the beginning

of a cluster, this time being Sunday 16:18 (UTC) (Sunday 11:18 am local time). Predicting as

far out as Monday 07:30 (UTC) (Monday 2:30 am local time), at this time, the actual number

of crimes was at 600. Very impressively, the predicted cascade size function estimated that at

Monday 07:30 (UTC) there would be 600.0063 arrivals. Again, this prediction algorithm has

shown itself to be very accurate and shows great use for practical application. The realisation

of this prediction is shown in Fig. 8.9 below.

Figure 8.9: Kansas City Crime Data Prediction.
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8.3 Hawkes Processes Application to Finance

My final investigation into the practical applications of Hawkes processes is on finance. For this,

I decided to explore S&P500 data, specifically, to model volatility in the financial markets.

This data set is the market index price of the S&P500 over 35 years, beginning in 02/01/1985

and spans as far as 31/12/2019. The specific “event“ I modelled is the occurrence of “volatile

days“, I have defined a volatile day as a trading day where the S&P500 open price differs from

the closing price by over 1% (either up or down). My reason for choosing the value of 1% as

the cutoff point is backed up by a common consensus that in the case where a market moves

by greater than 1% over a sustained period of time, one day in this case, this is considered a

“volatile market“ [23]. The reason I chose to use the S&P500 index as opposed to any other

index is because I see it as a much better metric for market movement, better than, say, the

price-weighted index of the Dow Jones Industrial Average. After calculating the volatility of

each of the 8822 trading days, there were 2054 volatile dates, this number of data points will

again ensure an acceptable level of accuracy in my analysis as we’ve seen from Section 7.1.

Plotting the counting process of these dates gives the following graph.

Figure 8.10: S&P500 Volatile Dates.

It is clear to see a large amount of clustering in this data; this would be expected as volatility

tends to incite further volatility (a perfect example of a self-exciting process). Based on the

distribution of volatile dates, this data looks to be very well suited to be modelled by a Hawkes

process. Estimating the parameters of this process gave α = 2.04, β = 2.41 and λ = 2.52. Using

these parameters in the multiple simulations algorithm gave me a model of the overall trend of

this data. This trend plotted on the same graph as the original data yielded the following.
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Figure 8.11: S&P500 Volatile Dates.

I then implemented the predicted cascade size algorithm on this data using the first 1300 arrivals

(up to 15/06/2006) as the observation window. I wanted to predict as far out as 04/10/2019,

the date at which the 2054th and final volatile trading day in this data set occurred. This gave

me a predicted cascade size of 2076.926, which is very close to the actual cascade size of 2054.

The plot below illustrates the accuracy of this prediction.

Figure 8.12: S&P500 Volatile Dates and Predicted Cascade Size.

I believe the best use for this analysis would again be as a rolling calculation to predict short-

term future volatility, much like the case with short-term bursts in crime data that I’ve modelled

in Section 8.2. This can be achieved using a method like the one described above.

One of the most important analyses implemented by an equity trader is the analysis of risk,

and as all traders know; where there is risk, there is opportunity for reward. Risk plays such a
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huge part in the trading of financial instruments that the motto of “turn[ing] risk into a path

for growth“ is used by leading global advisory, broking and solutions companies such as Willis

Towers Watson [24]. Therefore, the ability to forecast risk in the financial markets is one of the

most important weapons in the arsenal of an equity trader. That is why I will turn my attention

to the prediction of risk, again, taking risk to mean, in this case, volatility in the financial

markets. Using the predicted cascade size algorithm, I can predict the volatility in the S&P500

out to any time point. I decided to predict as far as the end of the year 2039 as this would give

a clear trajectory for volatility in the future, given the previous 35 years of data. This analysis

predicted an additional 1186.847 volatile trading days to occur by the date 05/10/2039. This

means that out of the 5160 trading days, 23% of them will be “volatile“. A visualisation of this

prediction is shown below.

Figure 8.13: S&P500 Volatile Dates and Predicted Future Cascade Size.

The code and data used in my analysis throughout my report are available at

http://danieloshea.ie/more/modelling-with-hawkes-processes/
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Chapter 9

Conclusion

To illustrate my conclusion on the modelling of Hawkes processes, I will implement a final test

on the S&P500 volatile dates data set.

I decided to compare how these different methods of future cascade size prediction differ on a

large scale. To do this, in the case of the predicted cascade size algorithm (m), I took the entire

data set as the observation window and predicted the cascade size for another 35 years. This

will mean that the prediction window is the same size as the observation window. In the case

of the resimulation algorithm, I predicted, using the estimated parameters, for another 2054

arrivals, starting at the end of the actual last observed arrival in this data set. This will also

predict arrivals for the same amount of time as the observed data set. Fig. 9.1 below shows the

realisation of these two prediction algorithms.

Figure 9.1: S&P500 Volatile Dates and Predicted Future Cascade Size.
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The most important item to note is the fact that they converge on almost the exact same point,

but take different paths to get there. The predicted cascade size (m) algorithm has shown itself

to be extremely accurate in many cases over a short prediction window. The downfall of this

algorithm is the fact that the realisation of its prediction is linear, and therefore does not predict

clusterings of arrivals over a large prediction window. In the case of the resimulation algorithm,

I see its main advantage as its ability to predict the occurrence of clustered arrivals over a long

term prediction window, given the data observed. The disadvantage of this method, in my

opinion, is that the clusters of arrivals, when predicting their occurrence in the very near future,

seem to be almost arbitrary in their manifestation.

9.1 Research and Business Use

For this reason, when recommending further research and the practical application of Hawkes

process modelling algorithms, I would recommend the implementation of an algorithm like the

one described in Section 8.2 using the predicted cascade size (m) method. The reasons for

this recommendation, along with the ones described in the paragraph above, come down to the

current state of scientific computation and the latest in the trends of data analysis. The super-

fast and efficient collection of data (of all kinds) leads to a greater need for fast analysis of this

data in order to take full advantage of the recency of the information. An example of this being

used is in social media attention engineering algorithms, which are developed by companies

whose business model is based on advertising, the efficiency of which increases with retention

time. Maximising retention time is achieved by selectively ranking and arranging content to fulfil

cravings of instant gratification based on the behaviour of the user, the data describing which,

is collected instantly with any interaction with the content previously shown. These algorithms,

when they work effectively, can reap untold actionable results and make vast amounts of profit,

and companies continue to spend millions on developing them.

This type of business demand has led to the acceleration in the development of computer hard-

ware and software that can manage to both collect and analyse this data efficiently and quickly.

9.2 Software

The focused development of efficient cloud server software to run these processes and algorithms

is evident across the tech sector. For example, Microsoft, developer of Windows OS, uses a kernel

of the open-source operating system Linux to run Azure, their cloud computing service. This

kernel has been developed to be extremely efficient in its computation and completely stripped of

all unnecessary background processes and tasks so that the full power of the hardware available

can be used. The fact that there is so much work being put into efficient cloud computing

software, that the developer of the most popular operating system on earth uses a different
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operating system to run their cloud computing services, is evidence of this effort.

9.3 Hardware

Moore’s Law may be slowing down, but the current state of computer hardware still shows

growth year after year. Just ten years ago, the most powerful supercomputer was the Tianhe-

IA which had a peak speed of 2.566 petaflops (1 petaflop is 1015 floating-point operations per

second). Today, the most powerful supercomputer, the IBM Summit has a peak speed of 122.3

petaflops. This represents an almost 50-fold increase in ten years.

9.4 Further Application

I believe the predicted cascade size algorithm could be applied to many self-exciting processes

in the manner I’ve described. Along with the case of efficient police dispatchment from Section

8.2 and on-the-fly financial market risk management from Section 8.3, I will outline some other

ideas that come to mind. An algorithm like this could be applied in cases such as the following:

The business of Amazon Web Services (AWS) is to allocate server space to manage the internet

traffic, of companies like Netflix and Spotify, in such a way that customers can stream their

content without interruption or slowing data speed. When consumers request data packets from

these servers, it can happen quite suddenly and then all at once. An algorithm that uses the

observed internet traffic and then anticipates spikes in demand could be used by companies like

AWS to effectively manage sever space allocation.

In cases of a sudden disease pandemic, the ability to model the spread of the disease in real-

time and predict areas of future contraction can be extremely beneficial. The actionable results

coming from this would be to advise on best practices and for the allocation of scarce and vital

resources to at-risk areas, or soon-to-be at-risk areas.

In the case of supply management, when a retail trend starts to emerge in the current world of

social media marketing, retail companies can see sudden influxes of orders for popular products.

This is before the wholesaler is even aware that this product has become a hit in the mind of

the consumer. In this case, it is extremely important for the seller of the product to have their

orders in place from the manufacturer in the common case where the manufacturer cannot meet

this unexpected demand. In this situation, if a seller has the bulk of the orders for this hot

product, this distributor can then corner the market and gain a huge advantage in future name

recognition over other retailers.
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9.5 Discussion

We have seen that Hawkes processes have been used to model real-world self-exciting point

processes, however, using these models to find immediately actionable results, isn’t something

that I’ve seen much of in the literature around Hawkes processes.

I am happy to have explored this topic as I would like to see further research in the development

of these types of algorithms. I hope to have given a comprehensive review of the current state of

Hawkes processes and also to have inspired some sort of confidence in the reliability and accuracy

in the application of Hawkes processes to model self-exciting point processes. It is clear to me

that many processes in the current world of business seem to follow that of a Hawkes process,

and could be profitably analysed by these algorithms.
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Appendix A

Some Appendix

A.1 Poisson Process

Definition: Poisson Process [16]

A counting process N(t) is said to be a Poisson process with rate (or intensity) λ (> 0), if:

• N(0) = 0.

• The process has independent increments.

• The number of events in any time interval of length t is Poisson distributed with mean λt.

That is, N((s, t]) ≡ Poi(λt) for all s, t ≥ 0:

P
(
N((s, t]) = n

)
= e−λt

(λt)n

n!
, n ∈ N0 (A.1)

A.2 Calculating Log-Likelihood Equations

I will include here the log-likelihood calculations for k = 3 onward:

k = 3

l = log (λ) + log (λ+ α(e−β)) + log (λ+ α(e−2β + e−3β))− 4λ+
α

β
[(e−2β − 1) + (e−β − 1)].
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k = 4

l = log (λ) + log (λ+ α(e−β)) + log (λ+ α(e−2β + e−3β)) + log (λ+

α(e−β + e−3β + e−4β))− 5λ+
α

β
[(e−4β − 1) + (e−3β − 1) + (e−β − 1)].

k = 5

l = log (λ) + log (λ+α(e−β)) + log (λ+α(e−2β + e−3β)) + log (λ+α(e−β + e−3β + e−4β)) + log (λ

+α(e−2β + e−3β + e−5β + e−6β))− 7λ+
α

β
[(e−6β − 1) + (e−5β − 1) + (e−3β − 1) + (e−2β − 1)].

k = 6

l = log (λ) + log (λ+ α(e−β)) + log (λ+ α(e−2β + e−3β)) + log (λ+ α(e−β + e−3β + e−4β))

+ log (λ+ α(e−2β + e−3β + e−5β + e−6β)) + log (λ+ α(e−3β + e−5β + e−6β + e−8β + e−9β))

− 10λ+
α

β
[(e−9β − 1) + (e−8β − 1) + (e−6β − 1) + (e−5β − 1) + (e−3β − 1)].

k = 7

l = log (λ)+log (λ+α(e−β))+log (λ+α(e−2β+e−3β))+log (λ+α(e−β+e−3β+e−4β))+log (λ+

α(e−2β+e−3β+e−5β)+e−6β))+log (λ+α(e−3β+e−5β+e−6β+e−8β+e−9β))+log (λ+α(e−β+e−4β+

e−6β)+e−7β+e−9β+e−10β))−11λ+
α

β
[(e−10β−1)+(e−9β−1)+(e−7β−1)+(e−6β−1)+(e−4β−1)+(e−1β−1)].
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